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Abstract 

We report a suboptimal wavelet packet (WP) representation of signals emanating 

from a chaotic attractor contaminated by low levels of noise. Our method—geared to- 

wards choosing a suboptimal scaling function to parsimoniously represent the signal- 

involves extracting local eigenfunctions using artificial ensembles generated from a 

pseudo-probability space, and using the extracted local eigenfunctions to develop a sub- 

optimal scaling function. 

The application of our novel representation method to actual acoustic emission 

(AE) signals from the turning process reveals the superiority of these methods over the 

existing signal representations. 
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1     Introduction 

Signal representation is an essential step in many engineering signal processing ap- 

plications, such as pattern recognition and state estimation. The key task of signal 

representation is to find a basis to parsimoniously represent a given signal. In ad- 

dition, the basis should (i) capture essential signal features such as discontinuities, 

(ii) match the smoothness of the signal, (iii) accomodate rapid fluctuations in the sig- 

nal, (iv) cater to the stochasticity and the distribution of the signal, and (v) be usable 

on-line. 

If the signal belongs to a separable space such as the Hilbert space, we can compactly 

represent the signal by a countable basis, i.e., there are at the most countable infinity 

of elements (here, the basis functions) in the basis. For example, suppose the signal 

emanates from a second order stochastic process, i.e., a process whose autocorrelation 

function remains finite and integrable over a specified interval. The space of second 

order processes /^(R-, B,ß)—where B is the Borel-algebra constructed on the real line 

R and \i is the underlying probability measure—is complete and separable; therefore 

we may employ Karhunen-Loeve (KL) representation to obtain a basis. 

The KL representation of a second order stochastic process y(t) is given by 

where Z is the set of integers, and otj(t) are the independent solutions of 

J  K(t,r)aJ(r)dT = XJaJ(t) (2) 



(i.e., aj(t) are the eigenfunctions of the covariance function K(t,r)). Since A'(t,r) is 

self-adjoint [9], the KL representation consists of expressing a given signal as a linear 

combination of a few orthonormal modes. Since the basis is orthonormal and consists 

of the eigenfunctions of the stochastic process underlying a measured signal, the KL 

representation is optimal in the mean square sense. 

But, computing eigenfunctions of a generic second order process is extremely te- 

dious. In addition, from an implementation standpoint, the KL representation needs 

a few ensembles of a stochastic sequence to estimate K{t, r). In the absence of ensem- 

bles, i.e., when only one realization is available, we somehow need to generate some 

artificial ensembles in order to develop a KL-like representation. 

Alternatively, Fourier and wavelet representations are optimal under certain condi- 

tions and are commonly used in practice [3]. But they do not use eigenfunction basis. 

Of all the non-eigenfunction bases, wavelet bases are currently the most attractive, 

because of their ability to satisfy the five desirable properties mentioned earlier. By 

proper selection of wavelet basis, one may develop optimal representations of many 

classes of signals [8, 11]. 

Wavelet representation is algorithmically simple for representing transient signals 

in I2-space. Many researchers have focussed on finding optimal wavelet basis. Coifman 

and Wickerhauser [12] in their best basis formulation proposed that, given an overcom- 

plete set of basis functions belonging to a wavelet packet (WP) library, we may choose 

their optimal combination through a branch-and-bound method of entropy minimiza- 

tion. However, the WP library and hence the basis functions themselves are not chosen 

optimally with respect to the considered class of signals. 
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inated chaotic signals are more common than stationary signals. Hence, research 

finding the optimal representation of contaminated chaotic signals seems to be in 

der. 

In this paper, we develop a suboptimal scaling function using the local eigenfunc- 

dons, extracted as described in the following two sections, to represent signals emanat- 

ing from a chaotic process contaminated with low levels of noise. In other words, we 

develop a suboptimal wavelet packet (WP) representation of a signal which is a single 

realization of a chaotic process contaminated with low intensity noise. 

Our methodology consists of (i) generating artifical ensembles from a pseudo-probability 

space, constructed from a measured signal, as explained in Section 2; (ii) extracting 

local eigenfunctions from the pseudo-probabability space, as described in Section 3 

(these local eigenfunctions may be used to develop a computationally expensive KL- 

like representation scheme-called the local eigenfunction representation-from the 

obtained ensembles); and (Hi) using the extracted local eigenfunctions for suboptimal 

WP representation, as described in Section 4. 

2 Constructing pseudo-probability space of a 

chaotic attractor 

Since the considered signal corresponds to a single trajectory of a contaminated chaotic 

process, the KL representation cannot be directly used. However, by appropriately 

constructing a pseudo-probability space and an associated proabability measure from 

the TSD, we can extract artificial ensembles to develop a KL-like representation. The 



constructing of such a space and the associated probability measure for a dynamical 

system is studied in ergodic theory [4], which broadly deals with developing invariant 

measures for a dynamic system. Before we proceed further towards constructing the 

pseudo-probability space, let us review certain relevant aspects of dynamic systems 

and reinforce the concept of invariant measures. 

2.1     Overview of ergodic theory and our approach 

Suppose a dynamic system is modeled in terms of autonomous [7] nonlinear stochastic 

differential/difference equations with a state vector x(t) G M (the state space) and a 

discrete output y{n) = y(tn) as follows: 

dx   =   £(x) dt + g(x) dß , (3) 

y(n)    =    h(x(n)) + v{n)\n = 0,l,2,...N . (4) 

Here, (3) represents the process sytem and (4) represents the measurement setup. Fur- 

thermore, £(•) is a nonlinear stochastic vector field, g(-) and h(-) are continuous 

transformations, ß is a vector Wiener process [9] that accounts for dynamic noise, 

x(n) = x(tn), and v(n) is a Gaussian white noise sequence [5] that accounts for ad- 

ditive measurement noise. As this is an autonomous system, £(x) and £(i) are not 

explicit functions of time t. Equation (3) is an Ito equation [5] because the gain matrix 

g(x) is a stochastic process. 

When there is no dynamic noise, i.e., g{x) dß = 0, the solution to (3) results in a 



trajectory 

x(0 = /(x(0),0, (5) 

where / : M •-► M represents the flow that determines the evolution of x(t) from a 

specific initial condition x(0). If the sytem is dissipative, i.e., the volume elements1 

in the state space contract as the system evolves,2 then the trajectory generally tends 

asymptotically to certain compact subsets. If S C M is a compact set and U is the 

largest open set that asymptotically contracts to S C U, then S is called an attracting 

set and U is called the basin of attraction of S. An attracting set may be reduced into 

certain distinct portions, some of which may not be attracting. 

All disjoint subsets A1,A2,A3,... of S that are attracting are called attractors, 

hile S - (U-A-i) is non-attracting.   An attractor A C M is associated with the 

following four properties [7, 13]: 

1. Invariance: If x(0) G A, then /(x(0),0 G A V< > 0. 

2. Attractivity: For some ÜCM defined in the neighborhood of A, £[U, t] C 

15 and lim,-«, /[IM] = A. 

3. Recurrence:  For every e > 0 and almost every i(0) G A, 3 t > 0 such that 

||i(0) - x(t)\\ < t; in effect, the trajectories within an attractor remain 

bounded. 

4. Indecomposability: An attractor is disjoint from all other attractors and 

w 

1 Volume elements refer to the small finite chunks of state space. 
2The concept of dissipative systems emerges from an Eulerian perspective rather than from a Lagrangian 

one. 
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x(0). In addition, for a chaotic process, the independent random trajectories emerging 

from the neighborhood of a certain initial point x(0) G A remain locally close together. 

Therefore, (A,B\,n\) is a valid probability space with the trajectory-segments emerg- 

ing from A as realizations of a stochastic process denned thereon. 

However, when the dynamic system is contaminated, the probability space con- 

structed from a trajectory thereof is not valid under all conditions because the pres- 

ence of noise may destroy the structure of the attractor A. Hence, we call the con- 

structed probability space a pseudo-probability space. Thus, from the constructed 

pseudo-probability space, the separate realizations consists of local evolutions from 

the neighborhood of i(0), all belonging to a single trajectory. 

2.2     Pseudo-probability space construction procedure 

In the foregoing, we assumed knowledge of x(t) G A C M. But when only a scalar 

TSD y(n) corresponding to the process output is available, we need to extract samples 

using the concept of pseudo-probability space, which in turn requires the topological 

notion of neighborhood. For every y(n), there exists, a diffeomorphism mapping y(n) 

into the observable portion of x(t). Alternatively, if we reconstruct the attractor of the 

original dynamics from the TSD using lag-coordinates [2], there is a diffeomorphism 

connecting the reconstructed state vector C(-) and observable subspace of the actual 

state vector x{-). The state vector £(■) o( the lag-reconstructed dynamics lies in a 

vector space of dimension <iE, the embedding dimension. We would like to stress that 

the procedure for determining an estimate of dE and obtaining <_(n) is nontrivial. For 

the details thereof, the reader is referred to [l]. 
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Original attractor Lag-reconstructed attractor 

x2(n)   -20   -20      x1(n) y(n+1)-20   -20      y(n) 

gure 1:  Rossler attractor obtained from:  (a) actual solution of the differential equation, 
)) lag coordinates. 

We illustrate the construction of the pseudo-proabability space through the follow- 

ing example. The original attractor and the lag-reconstructed attractor of the Rossler 

attractor corresponding to the three first order differential equations 

x2 

x.i 

-(*2 + X3) 

xi +0.15x2 

0.20 + x3(xi - 10.0) 

(7) 

with j/(n) = xi(ln), n = 1,2, ...N are shown in Figure 6. In the lag-reconstructed 

vector space, at a particular point £(n) on the attractor, the set of points {£(n ± 

I), t = 0,1,2,...} resulting from the evolution (both forward as well as backward) 

of C(n) constitutes a strand. If the TSD is chaotic, two nearby points located in 

different strands of the same trajectory (read TSD), locally stay close together before 

exponentially diverging-ofT. 

Thus, if we can identify a set of Nß neighbors  {Cr(")i  1   <  r  <   Nh)  about a 
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Local eigenfunctions 
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Table 1:   Comparison of entropies resulting from wavelet packet representation of a signal 
from the Rossler attractor using different scaling functions. 

Scaling function 

Coiflet 1 
Daubechies 4 

Daubechies 20 
Cosine Packet 
Suboptimal 

Entropy 

5.73 
5.77 
5.43 
2.63 
0.03 

We used the extracted scaling functions for WP representation of signals from the 

Rossler attractor. The length of the ensembles and hence the codebook function was 

set to L =  168.   We decimated the codebook function by 4 to result in a scaling 

function 42 datapoints long. The computed scaling function is shown in Figure 6, and 

a comparison of entropt? resulting from WP representation with our scaling function 

against the entropies resulting from WP representation with other standard bases [12] 

is provided in Table 1. The entropy values of suboptimal representation are smaller 

than those of other standard bases by an order of magnitude.  This implies that our 

suboptimal basis is more suited other standard bases for representing chaotic signals. 

A practical validation of our novel representation scheme is provided in the following 

section. 

Entropy is a measure of parsimony of representation. Thesmalier the value of signal entropy, the great 
is the parsimony. [12] 

17 



Suboptimal scaling function for the Rossler attractor 

20 25 
Time index n 

Figure 4:   ScaHng function (42 appoints >ong) lb, «bopthnd WP reprcentaUon of the 

Rosslcr attractor. 
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Table 2:   Comparison of entropies resulting from wavelet packet representation of a signal 

from the AE signals using different scaling functions. 
Scaling function Entropy || 

Coiflet 1 4.79 
Daubechies 4 5.32 
Daubechies 20 4.53 
Cosine Packet 3.84 

Suboptimal 0.05 

5     Application to signals from machining sen- 

sors 

We used the suboptimal wavelet basis to represent the acoustic emission (AE) signals 

in machining. For a partcular signal, with L = 76, NB = 50 and dE = 9, we computed 

50 ensembles as shown in Figure 6, and determined the local eigenfunctions therefrom. 

Only 3 eigenfunctions, shown in Figure 6, were dominant. From these eigenfunctions, 

we constructed a scaling function as described earlier in this paper. The use of this 

scaling function substantially reduced the entropy of representation as revealed in Ta- 

ble 2. Clearly, the entropy of WP representation with the suboptimal scaling function is 

about a magnitude less than that for WP representation using other scaling functions, 

implying the practical effectiveness of our method. 

6     Conclusion 

We have thus developed a novel representation scheme for contaminated chaotic signals. 

It is probably for the first time that a representation scheme for contaminated chaotic 
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Figure 5:   Artificial ensembles generated from an acoustic emission signal.   The artificial 
ensembles were generated with NB = 50, dp = 9, lag = 6 and L = 60. 
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• 6: Three dominant eigenfunctions extracted from the artificial ensembles generated 
in acoustic emission signal. The artificial ensembles were generated with NR = 50, 
>, lag = 6 and L = 60. 
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signals has been developed. This parsimonious suboptimal representation scheme may 

be applied to various engineering disciplines where chaotic signals occur, and specifi- 

cally to the machining process. In fact, we have met with reasonable success in using 

the scaling functions developed in this work to extract signal features from AE signals 

for tool wear estimation [2]. 
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